Detailed heterogeneous oxidation of soot surfaces in a particle-resolved aerosol model
نویسندگان
چکیده
Using the particle-resolved aerosol model PartMC-MOSAIC, we simulate the heterogeneous oxidation of a monolayer of polycyclic aromatic hydrocarbons (PAHs) on soot particles in an urban atmosphere. We focus on the interaction of the major atmospheric oxidants (O3, NO2, OH, and NO3) with PAHs and include competitive co-adsorption of water vapour for a range of atmospheric conditions. For the first time detailed heterogeneous chemistry based on the Pöschl-Rudich-Ammann (PRA) framework is modelled on soot particles with a realistic size distribution and a continuous range of chemical ages. We find PAH half-lives, τ1/2, on the order of seconds during the night, when the PAHs are rapidly oxidised by the gas-surface reaction with NO3. During the day, τ1/2 is on the order of minutes and determined mostly by the surface layer reaction of PAHs with adsorbed O3. Such short half-lives of surface-bound PAHs may lead to efficient conversion of hydrophobic soot into more hygroscopic particles, thus increasing the particles’ aerosol-cloud interaction potential. Despite its high reactivity OH appears to have a negligible effect on PAH degradation which can be explained by its very low concentration in the atmosphere. An increase of relative humidity (RH) from 30 % to 80 % increases PAH half-lives by up to 50 % for daytime degradation and by up to 100 % or more for nighttime degradation. Uptake coefficients, averaged over the particle population, are found to be relatively constant over time for O3 (∼ 2×10−7 to∼ 2×10−6) and NO2 (∼ 5×10−6 to∼ 10−5) at the different levels of NOx emissions and RH considered in this study. In contrast, those for OH and NO3 depend strongly on the surface concentration of PAHs. We do not find a significant Correspondence to: N. Riemer ([email protected]) influence of heterogeneous reactions on soot particles on the gas phase composition. The derived half-lives of surfacebound PAHs and the time and particle population averaged uptake coefficients for O3 and NO2 presented in this paper can be used as parameterisations for the treatment of heterogeneous chemistry in large-scale atmospheric chemistry models.
منابع مشابه
Rapporteur M. Ph. Vernoux Directeur De Recherchè a L'ircelyon Rapporteur
This study describes the development of kinetic models for platinum-ceria-zirconia (Pt/CexZr1−xO2)-catalysed diesel particle filter (DPF) regeneration. Such models have a practical purpose in that they can be used to calculate source terms in 3D flow models, and they also have an intrinsic interest for the understanding of the mechanisms of catalysed soot oxidation. The core of this kinetic ana...
متن کاملParticle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.
Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone...
متن کاملConnecting the oxidation of soot to its redox cycling abilities
Although it is known that soot particles are emitted in large quantities to the atmosphere, our understanding of their environmental effects is limited by our knowledge of how their composition is subsequently altered through atmospheric processing. Here we present an on-line mass spectrometric study of the changing chemical composition of hydrocarbon soot particles as they are oxidized by gas-...
متن کاملSimulating the evolution of soot mixing state with a particle-resolved aerosol model
The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition ...
متن کاملSize Distribution Measurement of Candle\'s Soot Nanoparticles by Using Time Resolved Laser Induced Incandescence
Time resolved laser induced incandescence (LII) technique is used to measure size distribution of soot nanoparticles of candle's flame. Pulsed Nd:YAG laser is used to heat nanoparticles to incandescence temperature and the resulting signal is measured. Mass and energy balance equations are numerically solved to calculate temperature of soot particles in low fluence regime. Assuming Plank black ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011